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Abstract. In evolutionary algorithms a common method for encoding 
neural networks is to use a treestructured assembly procedure for con- 
structing them. Since node operators have difficulties in specifying edge 
weights and these operators are execution-order dependent, an alterna- 
tive is to use edge operators. Here we identlfy three problems with edge 
operators: in the initialization phase most randomly created genotypes 
produce an incorrect number of inputs and outputs; variation operators 
can easily change the number of input/output (I/O) units; and units have 
a connectivity bias based on their order of creation. Instead of creating 
1/0 nodes as part of the construction process we propose using param- 
eterized operators to connect to  preexisting 1/0 units. Results from 
experiments show that these parameterized operators greatly improve 
the probability of creating and maintaining networks with the correct 
number of 1/0 units, remove the connectivity bias with 1/0 units and 
produce better controllers for a goal-scoring task. 

1 Introduction 

Neural networks are one of the more common types of controllers used for arti- 
ficial creatures and evolutionary robotics [l]. Since representations that directly 
encode the weights and connections of a network have scalability problems in- 
direct representations must be used for larger networks - although to achieve 
better scalability the indirect representation must allow for reuse of the genotype 
in creating the phenotype [2]. One type of indirect representation that is becom- 
ing increasingly popular for encoding neural networks is to  use a tree-structured 
genotype which speciiies how to construct them. Advantages of indirect, tree- 
structured representations are that they better allow for variable sized networks 
than directly using a weight matrix, and Genetic Programming style recombi- 
nation between two trees is easier and more meaningful than trying to swap 
sub-networks with a graph-structured representation. 

One of the original systems [or encoding neural networks in tree-structured 
assembly procedures is cellular encoding [3]. Yet cellular encoding has been 
found to  have shortcomings due to  its use of node operators: subtrees swapped 
through recombination do not produce the same subgraphs because node oper- 
ators me execution-order dependent and specifying connection weights is prob- 



lematic since node operators can create an arbitrary number of edges [4]. Con- 
sequently, of growing interest is the use of edge-encoding commands in which 
operators act on edges instead of nodes [5-71. 

In this paper we point out three different shortcomings of edge-encoding lan- 
guages. First, regardless of whether the first N nodes are taken as input/output 
(I/O) units or if special node-construction commands are used for creating 1/0 
units, when creating an initial population it is difficult to ensure that randomly 
created genotypes have the correct number of them. A second problem is that as 
evolution proceeds the variation operators have a high probability of changing 
the genotype so that it produces networks with incorrect numbers of 1/0 units. 
Finally, a more serious problem with tree-structured assembly procedures is the 
node creation-order connectivity bias (NCOCB). The NCOCB problem is that 
nodes created from edge operators at the bottom of the genot,ype will have only 
a single input and output, whereas nodes created from operators higher up in 
the genotype will have a connectivity proportional to ahe igh t .  

One way to address the problems of producing the correct number of 1/0 
nodes and the NCOCB with I/O nodes is by changing the construction lan- 
guage. Rather than having commands in the language for creating a new 1/0 
unit, or assigning the N t h  created unit as the ith 1/0 unit, we propose start- 
ing network construction with the desired number of 1/0 units and then using 
parameterized-connection operators for adding edges to  these units. Problems in 
creating and maintaining networks with the correct number of 1/0 units are re- 
duced since all networks start with the desired number and no commands exist 
for creating/removing them. Also, parameterized connection commands mean 
that the expected number of connections for all I/O units is eqilal for randomly 
created genotypes and does not suffer from the NCOCB. 

In the following sections we first describe a canonical method for using edge 
encoding operators to represent neural networks as well as our parameterized 
operators for connecting to 1/0 units. Next we present our experiments which 
show the different biases with standard edge-encoding operators and demon- 
strate that evolution with the parameterized operators for connecting to 1/0 
units produces better controllers on a goal-scoring task. Finally we close with a 
discussion on the underlying problem with edge operators and tree-structured 
representations and a conclusion in which we restate our findings. 

2 Encoding Neural-Networks 

In this section after describing the type of neural networks that we want t o  
evolve we then describe a tree-structured representation for encoding them, fol- 

_lowed by two different methods for handling input and output (I/O) units. The 
first method for handling I/O units uses a standard edge-encoding language 
(SEEL) and has special commands for creating 1/0 nodes. Since this method 
has problems in creating the correct number of 1/0 nodes and also has a node 
creation-order connectivity bias (NCOCB) we then describe a second method 
for handling I/O units. In this second method the initial network starts with 



the desired number of 110 units and operators in the language connect to  them 
using operator parameters to speclfy which unit to connect to (PEEL, for pa- 
rameterized edge-encoding language). 

2.1 Neural Network Architecture 

The neural networks used in these experiments are continuous-time, recurrent 
networks similar to those of Beer and Gallagher [8], and of our previous work 
[9, lo]. Each non-input neuron has an input bias, 8,  and a time constant, r. The 
activation value of a non-input neuron ai at time t is: 

For input neurons, their activation value is the value of the corresponding sensor. 

2.2 

The different methods for encoding neural networks or graphs with a tree- 
structured assembly procedure atl start with a single node and edge and then 
new nodesledges are added by executing the operators in the assembly proce- 
dure. Using an edgeencoding language in which graph-construction operators 
act on the edge connecting from unit A to  unit B, a typical set of commands 
are as follows. 

Creating a Network from a Tree 

- addieverse creates a link from B to  A. 
- addspl i t (n)  creates a new neuron, C, with a bias of 0 = n, and adds a 

new l i d  from A to  C and creates a new edge connecting from neuron C to  
neuron B. The bias of this node is set to 0 = n, and the time constant is set 
to  zero. 

- addsplit-cont(m, n) acts the same as add-split (>, only it creates a con- 
tinuous time neuron with a bias of 0 = m and a time constant of r = n. 

- connect creates a new link from neuron A t o  neuron B. 
- dest-tonext changes the to-neuron in the current link to  its next sibling. 
- loop creates a new link from neuron B to  itself. The no-op command per- 

- set-ueight(n) sets the weight of the current link to  n. 
- source-tonext changes the from-neuron in the current link to  its next 

sibling. 
- source-to-parent changes the from-neuron in the current link to the input- 
- neuron of the current from-neuron. 

Of these c o m a n d s  addsplit(n) and addsplitront(rn, n) have exactly 
three children commands since after their execution the edge they act on becomes 
three edges. The se t se ight (n )  command has no children, consequently it is 
always a leaf node and the no-op has either zero or one children so it can be 
either a leaf node and halt the development of the graph on the current edge, 

forms no operation. 
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or it can be used to delay execution on the current edge for a round allowing 
time for the rest of the graph to develop more. The rest of the commands result 
in the addition of a single new edge to the graph so they have exactly two 
children commands: one to continue graph construction along the original edge 
one command to  construction along the new edge. 

Using the commands described above the sequence of graphs from figure lb-i 
shows the construction of a network from the genotype in figure 1.a. Graphs are 
constructed from this genotype by starting with a single neuron linked to itself, 
figure l.b, and executing the commands in the assembly procedure in breadth- 
first order. First, executing split(0.01) adds node b with a bias of 0.01 and 
pair of links, figure 1.c. The command set-weight (0.1) sets the weight of the 
link id to 0.1, no-op performs no operation, and then split (0 .02 )  results in 
the creation of neuron c with a bias of 0.02 and two more links, figure 1.d. 
Source-to-parent creates a second link a, and set-weight(0.2) sets the 
weight of the link ba to 0.2, figure 1.e. The second source-to-parent command 
creates the link &, executing set-weight (0.3) sets the weight of the link & 
to 0.3 and set-weight(4.2) results in a weight of -0.2 assigned to the link 
2, figure 1.f. The source-to-next command results in the link ?d being cre- 
ated, figure 1.g. The command set-weight(0.4) sets the weight of link bc t o  
0.4 and then executing connect creates an additional link &, figure 1.h. Ex- 
ecuting set-weight(0.5) sets the weight of link 2 to 0.5, set-weight(0.6) 
sets the weight of link $ to 0.6, no-op sets the weight of link & to 0.0, and 
set-weight (0.7) sets the weight of link & to 0.7, figure 1.i. In addition, after 
all tree-construction operators have been executed, there is a pruning phase that 
consolidates the weights of links with the same source and destination neuroris, 
figure 1.j, and removes hidden neurons that are not on a directed path to an 
output neuron. 

+ 

-+ 

2.3 Standard Edge Encoding Language 

The graph-construction language of the previous sub-section can be used to 
create neural networks either by assigning the first n units as 1/0 units or by 
adding commands specifically for creating 1/0 units. Assigning arbitrary units 
to be 1/0 units has the drawback that changes in the genotype can add/delete 
units in the network so that units shift position and what was a the ith input unit 
in the parent becomes the i + 1 input unit in the child. To avoid this disruption 
the SEEL we use has specialized commands for creating I/O units. 

1/0 units are created through the use of the add-input and outputsplit(n) 
commands. Since these are edge operator% we label the edge they are associated 
with to be from the vertex A to the vertex B. Executing the add-input command 
creates a new input unit and an edge connecting from this unit to A. Output 
units are created with the outputsplit(n) command, which performs a split 
on the existing edge and the newly created neuron is set as an output unit with 
a bias of 8 = n. 

. 1-1 
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Fig. 1. A tree-structured encoding of a network (a), with dashed-lines to separate the 
layers, and (b-j) construction of the network it encodes. 
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2.4 Parametric Edge Encoding Language 

A method to remove the connectivity bias with 1/0 nodes is by having these 
nodes exist in the initial graph and then adding connections to them, such as 
with the commands c o n n e c t i n p u t  (i) and connect-output ( i )  . Labeling the 
current edge as connecting from unit A to unit B,  c o n n e c t i n p u t ( i )  creates a 
link from the i th input neuron to B and connect-output(i)  creates a link from 
B to the i th output neuron. Since each of these commands creates a new edge, 
both commands have exactly two children operators: one to continue network 
construction along the original edge and one to construct along the new edge. 

3 Experiments 

In this section we present our experiments comparing SEEL with PEEL. First 
we show that randomly created genotypes using SEEL have problems producing 
networks with the desired number of 1/0 neurons whereas this problem is greatly 
reduced when using PEEL. Next we show that networks encoded with PEEL are 
more robust to maintaining the correct number of 1/0 units under mutation and 
recombination than are networks encoded with SEEL. In our third set of experi- 
ments we demonstrate the existence of the node creation-order connectivity bias. 
Finally, we demonstrate that using PEEL results in better neural-controllers for 
the evolution of a goal-scoring behavior. 

3.1 Initialization Comparison 

One benefit of starting with the desired number of 1/0 neurons is that randomly 
created, network-constructing, assembly procedures are more likely to  have the 
correct number of 1/0 neurons. This can be shown by comparing the number of 
valid networks created using both network construction languages. A network is 
considered valid if it has four input neurons and four output neurons (arbitrary 
values selected for this experiment) and for each input neuron there is a path to 
at least one output neuron and each output neuron is on a path from at least 
one input neuron. Table 1 shows the number of valid networks created from ten 
thousand randomly created assembly procedures for various tree depths. From 
this table it can be seen that valid networks are significantly more likely to be 
created with PEEL than with SEEL. The reason PEEL does not score 100% 
even though it starts with the correct number of 1/0 neurons is because some 
input neurons may not be on a path to an output neuron. 

3.2 Variation Comparison 

In addition to the pioblern of creating initial individuals with t l i k  correct number 
of 1/0 units, SEELs have difficulty maintaining these numbers under mutation 
and recombination. To show that PEELS better maintain valid networks we 
compare the number of networks that still have four inputs and four outputs 
after mutation and recombination from valid parents. 

~ ~ _. > 



Depth 
SEEL 
PEEL 

Table 1. Number of valid networks generated out of ten thousand randomly created 
tree-structured assembly procedures. 

5 4 5  6 7 8 9 10 11 12 13 
0 3 103 183 93 34 13 6 2 0 
0 0 12 314 1973 4657 6733 8072 8643 8848 

For this comparison the mutation operator modifies an individual by chang- 
ing one symbol with another, perturbing the parameter value of a symbol, 
adding/deleting some symbols, or recombining an individual with itself. Two 
types of recombination are used, with equal probability of using one or the 
other. The f i s t  recombination operator is the standard GP recombination that 
swaps random subtrees between parents [ll]. The second recombination opera- 
tor is similar to one-point crossover [12] and we call it matched recombination 
(MR). MR works by lining up two trees and, starting at the root, matches up 
the children nodes by type and argument values, finds the locations at which 
subtrees differ and then picks one of these places at random to swap. 

Since random trees of depth seven produced the most valid networks with 
SEEL, we compared ten thousand mutations and recombinations between SEEL 
and PEEL on valid, randomly created individuals. With SEEL mutation had a 
success rate of 84.8% and recombination had a success rate of 79.2%. In com- 
parison, with PEEL muiation produced valid children 93.5% of the time and 
recombination did so 89.5% of them. These results show that networks encoded 
with a PEEL are more robust to  variation operators. 

3.3 

A more serious problem with tree-structured assembly procedures is the node 
creation-order connectivity bias (NCOCB). Nodes created from commands early 
in the construction process tend to  have a greater number of edges into and out 
of them then nodes created later in the the process. One consequence of this bias 
is that 1/0 neurons that axe created early in the construction process will have 
a signiiicantly higher number of outputs/inputs than those 1/0 neurons created 
at the end of the construction process. 

The graph in figure 2.a shows the average connectivity (sum of inputs and 
outputs) of a node plotted against its creation order. n o m  this graph it can be 
seen that nodes created earlier in the construction process have more connections 
than those created later and most nodes only have two connections: one input 
and one output link. Thus if 1/0 nodes are created by the treestructured assem- 
bly procedure, the first 1/0 nodes will have significantly more inputs/outputs 
from/to them than those created later in the constructioi process. For input 
neurons, this suggests that the first inputs are likely to have a greater influence 
on the behavior of the network than the latter inputs and for output neurons this 
suggests that more processing of inputs is happening for the activation values of 
the first output neurons than for the latter output neurons. 

Node Creation Order  Connectivity Bias 
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Fig. 2. Graphs of (a) the average node connectivity by order of creation, and (b) the 
number of nodes with a given connectivity for randomly created individuals. 

Because the connectivity of a node is strongly biased by its height in the tree- 
structured assembly procedure and since most commands are near the leaves in 
the tree this results in a bias in the distribution of the number of nodes with a 
given connectivity. Most nodes in the network will have a connectivity of two - 
one input and one output - and the number of nodes with a given connectivity 
decreases exponentially (figure 2.b). 

3.4 

While PEEL has been shown to be better than SEEL for removing various 
biases, of practical importance is whether evolution with PEEL produces better 
controllers than evolution with SEEL. To test this we evolve neural-controllers 
for a goal-scoring task. 

Goal-scoring takes place in a computer-simulated, 275~152.5 walled, soccer 
field with goals at each end (figure 3.a). Inside the soccer field is a two-wheeled, 
soccer player which has seven sensor inputs (three sensors to detect distance to  
the wall (one pointing directly in front and the other two at 30" to  the left and 
right), and four sensors that return angle to the ball, distance to the ball, angle 
to the goal and distance to the goal) and two outputs (desired wheel-speed for 
the left and right wheels) (figure 3.b). 

Evaluating an individual consists of summing the score from eight trials, two 
each with the ball initially placed in each of the four corners of the field, and 
the soccer-player placed in the middle of the field. Initial locations for both the 
player and ball are perturbed by a smd.random amount and then the player 
is given 60 seconds (at 3Ofps this results in l80ilinetwork updates) to score as 
many gods as it can. For each goal scored the distance from the vehicle's starting 
position to the ball plus the distance from the ball's initial location to the goal is 
added to the network's score. After a goal is scored the ball is randomly located 
at the center of the field (630, f30 ) ,  the minimum distances to the ball and to 

Comparison on Evolving a Goal-Scoring Behavior 



Fig. 3. (a) The soccer field and (b) the soccer player and its sensors. 

the goal are reset, and the network is allowed to try to score another goal. Once 
time runs out, a network's score is increased by how much closer it moved the 
player to  the ball and how much closer it moved the ball to the goal. In addition, 
if the player scores an own-god, its score is reduced by the distance it moved 
the ball from its starting position to the goal. 

To perform these experiments the EA was run on a Linux-PC with evalua- 
tions farmed out to  five Playstation@ 2' development systems. Each experiment 
consisted of evolving fifty individuals fm fifty generations. A genera,tional EA 
was used and new individuals were created with equal probability of either mu- 
tation or recombination and an elitism of three. Evaluating one generation of 
fifty individuals took approximately four minutes. The results of experiments are 
shown in figure 4 and show that evolution with PEEL produces soccer players 
almost twice as fit as with SEEL. 
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Fig. 4. Fitness of the best evolved goal-scores averaged over four trials. 

Playstation is a registered trademark of Sony Computer Entertainment Inc. 



The higher fitness of networks encoded with PEEL is reflected in the be- 
haviors produced by these networks. Networks encoded with SEEL produced 
soccer players that tended to spin in place and move awkwardly or in a looping 
pattern. These networks only moved toward the ball somewhat haphazardly and 
generally did not appear to be aiming their shots. In contrast, networks encoded 
with PEEL would move to position themselves on the other side of the ball from 
the goal and then either push the ball toward the goal or spin to kick it toward 
the goal. The best of these networks seldom missed in its shots and an example 
of its behavior is shown in the sequence of images in figure 5. 

4 Discussion 

While the results of the experiments section show that various biases hold for 
the edge-encoding languages presented here, of interest is the degree to which 
these biases exist in other edge-encoding languages. The edge-encoding language 
of section 2 differs from Luke's [4] in that edges are not explicitly deleted, rather 
they disappear if they are not assigned a weight, and the split command does 
not delete the link 2 when it creates the new neuron c and links G? and 2. A 
command for explicitly deleting links would not necessarily change the biases in 
resulting networks since the no-op command with no children has the same ef- 
fect. In contrast, since the split operator used here adds links to existing neurons 
without removing any, it should produce a larger bias than Luke's split operator. 
Although the differences in operators between different edge encoding languages 
affect the degree of connectivity bias that can be expected, the main cause of 
the biases is the tree-structure of the representation. When a neuron is created 
it has a single input and output edge. Since edge operators can add one input or 
output to an existing neuron (except for the loop command, which adds both 
an input and an output) the expected connectivity of a neuron is on the order 
of 2 h e v h t .  ' 

Since PEEL only addresses the NCOCB for 1/0 units and does not scale 
for large networks the direction to go for addressing the various shortcomings 
of edge encodings is not clear. One way to remove the NCOCB is to change 
from tree-structured to graph-structured genotypes, but then there are difficul- 
ties in creating meaningful recombination operators. Another way is to switch 
to  operators in which the connectivity of a new node is not dependent on its 
depth in the genotype; but these would be node operators which have their own 
shortcomings [4]. 

5 Conclusion 

In this paper we identified' three shortcomings with typical edge encoding op- 
erators for representing neural networks: individuals created at random in the 
initialization phase do not usually have the correct number of inputs/outputs; 
variation operators can easily change the number input/output neurons; and the 
node creation-order connectivity bias (NCOCB). To address these problems we 
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Fig. 5. An evolved goal-scorer in action: (a)-(c) the soccer-player circles around the 
ball; (d) it pushes the ball toward the goal; (e)-(f), while the ball is going into the goal 
the player moves to the center of the field where the ball will reappear after the goal 
is scored. .. - v . .  



proposed using parameterized operators for connecting to  input/output units 
and demonstrated that evolution with these operators produces better neural 
networks on a goal-scoring task. While these parameterized operators greatly 
improve the probability of creating and maintaining networks with the correct 
number of input/output units it does not address the NCOCB problem for hid- 
den units. Consequently the contribution of this paper is more an observation 
that these shortcomings exist. Future work with edge encoding operators will 
need to address more general solutions to these problems that scale with the 
size of the network and work for hidden units. 

Acknowledgements 

Most of this research was conducted while the author was at Sony Computer 
Entertainment America, Research and Development and then at Brandeis Uni- 
versity. The soccer game and simulator was developed by Eric Larsen at SCEA 
R&D. 

References 

(2000) 
1. Nolfi, S., Floreano, D., eds.: Evolutionary Robotics. MIT Press, Cambridge, MA 

2. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative 
representation for body-brain evolution. Artificial Life 8 (2002) 223-246 

3. Gruau, F.: Neural Network Synthesis Using Cellular Encoding and the Genetic 
Algorithm. PhD thesis, Ecole Normale Supdrieure de Lyon (1994) 

4. Luke, S., Spector, L.: Evolving graphs and networks with edge encoding: Prelim- 
inary report. In Koza, J., ed.: Late-breaking Papers of Genetic Programming 96, 
Stanford Bookstore (1996) 117-124 

5. Brave, S.: Evolving deterministic finite automata using cellular encoding. In Koza, 
J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming 1996: 
Proceedings of the First Annual Conference, Stanford University, CA, USA, MIT 
Press (1996) 39-44 

6. Hornby, G.S., Pollack, J.B.: Body-brain coevolution using L-systems as a generative 
encoding. In: Genetic and Evolutionary Computation Conference. (2001) 868-875 

7. Koza, J., Bennett, F., Andre, D., Keane, M.: Genetic Programming 111: Darwinian 
Invention and Problem Solving. Morgan Kaufmann (1999) 

8. Beer, R.D., Gallagher, J.G.: Evolving dynamical neural networks for adaptive 
behavior. Adaptive Behavior 1 (1992) 91-122 

9. Hornby, G.S., Mirtich, B.: Diffuse versus true coevolution in a physics-based world. 
In Banzhaf, W., et al., eds.: Proc. of the Genetic and Evolutionary Computation 
Conference, Morgan Kaufmann (1999) 1305-1312 

10. Hornby, G.S., Takamura, S., Hanagata, O., Fujita, M., Pollack, J.: Evolution of 
controllers from a high-level simulator to a high dof robot. In Miller, J., ed.: 
Evolvable Systems: from biology to hardware; Proc. of the Third Intl. Conf. Lecture 
Notes in Computer Science; Vol. 1801, Springer (2000) 80-8, 

11. Koza, J.R.: Genetic Programming: on the programming of computers by means of 
natural selection. MIT Press, Cambridge, Mass. (1992) 

12. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point 
crossover and point mutation. Evolutionary Computation 6 (1998) 231-252 

- -  
. I> 


